Factor analysis modelling for speaker verification with short utterances

نویسندگان

  • Robbie Vogt
  • Chris Lustri
  • Sridha Sridharan
چکیده

This paper examines combining both relevance MAP and subspace speaker adaptation processes to train GMM speaker models for use in speaker verification systems with a particular focus on short utterance lengths. The subspace speaker adaptation method involves developing a speaker GMM mean supervector as the sum of a speaker-independent prior distribution and a speaker dependent offset constrained to lie within a low-rank subspace, and has been shown to provide improvements in accuracy over ordinary relevance MAP when the amount of training data is limited. It is shown through testing on NIST SRE data that combining the two processes provides speaker models which lead to modest improvements in verification accuracy for limited data situations, in addition to improving the performance of the speaker verification system when a larger amount of available training data is available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factor analysis subspace estimation for speaker verification with short utterances

Training the speaker and session subspaces is an integral problem in developing a joint factor analysis GMM speaker verification system. This work investigates and compares several alternative procedures for this task with a particular focus on training and testing with short utterances. Experiments show that better performance can be obtained when an independent rather than simultaneous optimi...

متن کامل

i-vector Based Speaker Recognition on Short Utterances

Robust speaker verification on short utterances remains a key consideration when deploying automatic speaker recognition, as many real world applications often have access to only limited duration speech data. This paper explores how the recent technologies focused around total variability modeling behave when training and testing utterance lengths are reduced. Results are presented which provi...

متن کامل

Within-session variability modelling for factor analysis speaker verification

This work presents an extended Joint Factor Analysis model including explicit modelling of unwanted within-session variability. The goals of the proposed extended JFA model are to improve verification performance with short utterances by compensating for the effects of limited or imbalanced phonetic coverage, and to produce a flexible JFA model that is effective over a wide range of utterance l...

متن کامل

Short Utterance Variance Modelling and Utterance Partitioning for PLDA Speaker Verification

This paper analyses the short utterance probabilistic linear discriminant analysis (PLDA) speaker verification with utterance partitioning and short utterance variance (SUV) modelling approaches. Experimental studies have found that instead of using single long-utterance as enrolment data, if long enrolledutterance is partitioned into multiple short utterances and average of short utterance i-v...

متن کامل

Improving Short Utterance PLDA Speaker Verification using SUV Modelling and Utterance Partitioning Approach

This paper analyses the short utterance probabilistic linear discriminant analysis (PLDA) speaker verification with utterance partitioning and short utterance variance (SUV) modelling approaches. Experimental studies have found that instead of using single long-utterance as enrolment data, if long enrolledutterance is partitioned into multiple short utterances and average of short utterance i-v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008